Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6481, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499584

RESUMO

The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.


Assuntos
Neoplasias da Mama , Dioxigenases , Humanos , Feminino , Desmetilação do DNA , Neoplasias da Mama/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , 5-Metilcitosina/metabolismo , Metilação de DNA , Biomarcadores/metabolismo , DNA/metabolismo , Epigênese Genética , Leucócitos/metabolismo , Carcinogênese/genética , Dioxigenases/genética
2.
Free Radic Biol Med ; 210: 230-236, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036068

RESUMO

Prostate cancer (PC) represents one of the most common cancer types worldwide and many patients suffering from this kind of cancer are treated with radiotherapy (RTH). Ionizing irradiation is closely associated with reactive oxygen species (ROS) production and oxidative stress. Over the years the role of vitamin C (VC) in cancer prevention has been highlighted as it may be mediated by its ability to neutralize pro-carcinogenic ROS. However, the debate concerning the presence of VC in blood and its beneficial effect on the survival of cancer patients is inconsistent and controversial. To our best knowledge until recently there have been no studies concerning such a role of intracellular VC (iVC). In the present study, blood and intracellular concentrations of vitamin C were analyzed along with the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), as an established marker of the stress condition, in leukocytes of PC patients during the course of radiotherapy. The level of intracellular vitamin C significantly decreased in PC patients in comparison with the healthy group, while there were no differences in blood VC. It was observed that a sub-group of the PC patients reacted to RTH decreasing VC in leukocytes (group A), while the other sub-group acted the other way round, significantly increasing its level (group B). Under stressful conditions (RTH) leukocytes react in two different ways. Both ways are in good agreement with two well recognized functions, proposed for iVC; it may serve as a save factor, to protect the cellular DNA, increasing its concentration inside the cell (group B), and as a reservoir decreasing the VC level inside leukocytes and releasing VC into the plasma to rescue its physiological level (group A). It was also demonstrated that there was a relationship between the level of 8-oxodG in leukocytes' DNA and the markers of RTH toxicity.


Assuntos
Ácido Ascórbico , Neoplasias da Próstata , Masculino , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Espécies Reativas de Oxigênio , Desoxiguanosina/metabolismo , Dano ao DNA , Vitaminas , Estresse Oxidativo , Neoplasias da Próstata/radioterapia , DNA/metabolismo
3.
Cell Physiol Biochem ; 57(4): 200-211, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37463420

RESUMO

BACKGROUND/AIMS: Seminal plasma composition is affected by the physiological state of the prostate, the major male reproductive gland. Semen components, like vitamin C, can modulate sperm function. Vitamin C is an effective scavenger of free radicals and is an essential component of enzymes such as TET proteins involved in the DNA demethylation process. In the present study, a broad range of parameters which may influence the metabolic state of the prostate gland were analysed including blood and prostate tissue vitamin C, epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA of leukocytes and prostate tissues. METHODS: The experimental material were tissue samples from patients with benign prostatic hyperplasia (BPH), normal/marginal prostate tissues from prostate cancer patients, leukocytes from healthy donors, and blood plasma from BPH patients and healthy donors. We applied ultra-performance liquid chromatography methods with mass spectrometry and/or UV detection. RESULTS: We found an unprecedentedly high level of intracellular vitamin C in all analysed prostatic tissues (benign prostatic hyperplasia and normal, marginal ones), a value much higher than in leukocytes and most human tissues. DNA epigenetic patterns in prostate cells are similar to other soft tissues like the colon, however, its uniqueness is the unprecedentedly high level of 5-(hydroxymethyl)-2'-deoxyuridine and a significant increase in 5-formyl-2'-deoxycytidine value compared to aforementioned tissues. Moreover, the level of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an established marker of oxidative stress, is significantly higher in prostate tissues than in leukocytes and many previously studied soft tissues. CONCLUSION: Our results pointed out that prostatic vitamin C (regarded as the main supplier of the vitamin C to seminal plasma) and the DNA modifications (which may be linked to the regeneration of prostate epithelium) may play important role to maintain the prostate health.


Assuntos
Próstata , Hiperplasia Prostática , Humanos , Masculino , Próstata/metabolismo , Ácido Ascórbico , Hiperplasia Prostática/genética , 8-Hidroxi-2'-Desoxiguanosina , Sêmen/metabolismo , Vitaminas , Epigênese Genética , Fertilidade , DNA/metabolismo
4.
Front Plant Sci ; 14: 1181039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389288

RESUMO

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

5.
J Exp Bot ; 74(12): 3488-3502, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36929394

RESUMO

The rye genome has a large size with a high level of cytosine methylation, which makes it particularly convenient for studying the occurrence of potential cytosine demethylation intermediates. Levels of global 5-hydroxymethylcytosine (5hmC) were analysed by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry in four rye species: Secale cereale, Secale strictum, Secale sylvestre, and Secale vavilovii. The amount of 5hmC showed interspecific variation, and was also variable among organs, i.e. coleoptiles, roots, leaves, stems, and caryopses. 5-Formylcytosine (5fC), 5-carboxycytosine (5caC), and 5-hydroxymethyluracil (5hmU) were also found to be present in the DNA of all species; their global level varied among species and organs. The 5hmC level clearly correlated with the 5-methylcytosine (5mC) quantity. The mass spectrometry analysis carried out on the 5mC enriched fraction supported this relationship. Highly methylated sequences also contained higher amounts of 5fC and most of all 5hmU, but not 5caC. The analysis of the distribution of 5hmC in chromosomes distinctly indicated the co-localization of 5mC with 5hmC in the same chromosomal regions. The regularities in the levels of 5hmC and other rare modifications of bases in the DNA may indicate that they play a role in the regulation of the rye genome.


Assuntos
5-Metilcitosina , Secale , Secale/genética , Citosina/análise , Citosina/química , DNA/química , DNA/metabolismo , Metilação de DNA , Cromossomos/química , Cromossomos/metabolismo
6.
Nanotoxicology ; 16(6-8): 791-811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36427221

RESUMO

Plastic nanoparticles are widely spread in the biosphere, but health risk associated with their effect on the human organism has not yet been assessed. The purpose of this study was to determine the genotoxic potential of non-functionalized polystyrene nanoparticles (PS-NPs) of different diameters of 29, 44, and 72 nm in human peripheral blood mononuclear cells (PBMCs) (in vitro). To select non-cytotoxic concentrations of tested PS-NPs, we analyzed metabolic activity of PBMCs incubated with these particles in concentrations ranging from 0.001 to 1000 µg/mL. Then, PS-NPs were used in concentrations from 0.0001 to 100 µg/mL and incubated with tested cells for 24 h. Physico-chemical properties of PS-NPs in media and suspension were analyzed using dynamic light scattering (DLS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and zeta potential. For the first time, we investigated the mechanism of genotoxic action of PS-NPs based on detection of single/double DNA strand-breaks and 8-oxo-2'-deoxyguanosine (8-oxodG) formation, as well as determination of oxidative modification of purines and pyrimidines and repair efficiency of DNA damage. Obtained results have shown that PS-NPs caused a decrease in PBMCs metabolic activity, increased single/double-strand break formation, oxidized purines and pyrimidines and increased 8oxodG levels. The resulting damage was completely repaired in the case of the largest PS-NPs. It was also found that extent of genotoxic changes in PBMCs depended on the size of tested particles and their ζ-potential value.


Assuntos
Leucócitos Mononucleares , Nanopartículas , Humanos , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Dano ao DNA , Oxirredução
7.
Sci Rep ; 12(1): 17552, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266436

RESUMO

In this study, the level of DNA modifications was investigated in three developmental stages of Drosophila melanogaster (larvae, pupae, imago) and in an in vitro model (Schneider 2 cells). Analysis was carried out using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. Our method made it possible, for the first time, to analyze a broad spectrum of DNA modifications in the three stages of Drosophila. Each stage was characterized by a specific modification pattern, and the levels of these compounds fluctuated throughout the D. melanogaster life cycle. The level of DNA modification was also compared between insects bred at 25 °C (optimal temperature) and at 18 °C, and the groups differed significantly. The profound changes in N6-methyladenine and 5-hydroxymethyluracil levels during the Drosophila life cycle and as a result of breeding temperature changes indicate that these DNA modifications can play important regulatory roles in response to environmental changes and/or biological conditions. Moreover, the supplementation of Schneider 2 cells with 1 mM L-ascorbic acid caused a time-dependent increase in the level of 5-(hydroxymethyl)-2'-deoxyuridine. These data suggest that a certain pool of this compound may arise from the enzymatic activity of the dTET protein.


Assuntos
Drosophila melanogaster , Estágios do Ciclo de Vida , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Temperatura , Drosophila/genética , DNA/metabolismo , Genômica , Ácido Ascórbico , Desoxiuridina
8.
Methods Mol Biol ; 2528: 127-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704189

RESUMO

R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and an unpaired strand of nontemplate DNA that represent a major source of genomic instability and are involved in regulation of several important biological processes in eukaryotic cells. A growing body of experimental evidence suggests that RNA moieties of RNA-DNA hybrids may convey RNA modifications influencing various aspects of R-loop biology. Here we present a protocol for quantitative analysis of RNA modifications on RNA-DNA hybrids using stable-isotope dilution ultraperformance liquid chromatography coupled with tandem mass spectrometry (SID-UPLC-MS/MS). Supplemented by other techniques, this method can be instrumental in deciphering the roles of RNA modifications in R-loop metabolism.


Assuntos
RNA , Humanos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , DNA/química , RNA/genética , Espectrometria de Massas em Tandem
9.
Clin Immunol ; 239: 108997, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398518

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a rare autoimmune disease characterized by progressive fibrosis of the skin and internal organs. Besides genetics risk factors, understanding the epigenetic modifications in SSc has been gaining acceleration in recent years. Epigenetic modifications are reversible and defined as druggable targets. In this context, it is highly important to present a systemic perspective to epigenetic modifications of SSc in terms of both pathogenesis and clinical utility. MATERIAL AND METHODS: DNA samples from the whole blood specimens of the 41 SSc patients and 27 healthy controls (HCs) were obtained. Absolute quantification of 5-mC, 5-hmdC, 5-cadC, 5-fdC, and 5-hmdU as the DNA methylation and demethylation products were performed using 2D-UPLC-MS/MS. Demographic data and clinical scores were recorded in detail. RESULTS: 5-hmdU was significantly higher in SSc patients while 5-hmdC was lower compared to the HCs (p < 0.01, p = 0.012 respectively). 5-cadC and 5-fdC had upward trend in SSc (p = 0.064; p = 0.066). These results support that SSc patients tend to have a global hypomethylation pattern. Clinical analyzes revealed that lung, gastrointestinal, joint, and vascular involvement of SSc is also associated with increased demethylation or decreased methylation profile. CONCLUSION: We performed absolute quantification of epigenetic DNA modification products in SSc for the first time. We demonstrated an upward trend in global hypomethylation in SSc. Furthermore, as a result of detailed clinical analyzes, the relationship between lung, GIS, and vascular involvement with epigenetic changes was shown. We believe that absolute quantification of DNA methylation and demethylation products with novel technologies can provide a deep understanding of disease pathogenesis and has the potential to mark an era for developing new therapeutic strategies.


Assuntos
Metilação de DNA , Escleroderma Sistêmico , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , DNA , Epigênese Genética , Humanos , Escleroderma Sistêmico/genética , Espectrometria de Massas em Tandem
10.
Cells ; 11(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269510

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are characterized by genomic instability, which may arise from the global hypomethylation of the DNA. The active DNA demethylation process may be linked with aberrant methylation and can be involved in leukemogenesis. The levels of 5-methylcytosine oxidation products were analyzed in minimally invasive material: the cellular DNA from peripheral blood cells and urine of patients with AML and MDS along with the control group, using isotope-dilution two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. The receiver operating characteristic curve analysis was used for the assessment of the ability to discriminate patients' groups from the control group, and AML from MDS. The most diagnostically useful for discriminating AML patients from the control group was the urinary excretion of 5-hydroxymethylcytosine (AUC = 0.918, sensitivity: 85%, and specificity: 97%), and 5-(hydroxymethyl)-2'-deoxyuridine (0.873, 74%, and 92%), while for MDS patients 5-(hydroxymethyl)-2'-deoxycytidine in DNA (0.905, 82%, and 98%) and urinary 5-hydroxymethylcytosine (0.746, 66%, and 92%). Multi-factor models of classification trees allowed the correct classification of patients with AML and MDS in 95.7% and 94.7% of cases. The highest prognostic value of the analyzed parameters in predicting the transformation of MDS into AML was observed for 5-carboxy-2'-deoxycytidine (0.823, 80%, and 97%) and 5-(hydroxymethyl)-2'-deoxyuridine (0.872, 100%, and 75%) in DNA. The presented research proves that the intermediates of the active DNA demethylation pathway determined in the completely non-invasive (urine) or minimally invasive (blood) material can be useful in supporting the diagnostic process of patients with MDS and AML. The possibility of an early identification of a group of MDS patients with an increased risk of transformation into AML is of particular importance.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , DNA/metabolismo , Desmetilação do DNA , Desoxicitidina , Desoxiuridina/metabolismo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/diagnóstico , Prognóstico
11.
Epigenetics ; 17(8): 894-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494499

RESUMO

Hypermethylation of tumour suppressors and other aberrations of DNA methylation in tumours play a significant role in cancer progression. DNA methylation can be affected by various environmental conditions, including hypoxia. The response to hypoxia is mainly achieved through activation of the transcriptional program associated with HIF1A transcription factor. Inactivation of Von Hippel-Lindau Tumour Suppressor gene (VHL) by genetic or epigenetic events, which also induces aberrant activation of HIF1A, is the most common driver event for renal cancer. With whole-genome bisulphite sequencing and LC-MS, we demonstrated that VHL inactivation induced global genome hypermethylation in human kidney cancer cells under normoxic conditions. This effect was reverted by exogenous expression of wild-type VHL. We showed that global genome hypermethylation in VHL mutants can be explained by transcriptional changes in MDH and L2HGDH genes that cause the accumulation of 2-hydroxyglutarate - a metabolite that inhibits DNA demethylation by TET enzymes. Unlike the known cases of DNA hypermethylation in cancer, 2-hydroxyglutarate was accumulated in the cells with the wild-type isocitrate dehydrogenases.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Carcinoma de Células Renais/genética , DNA/metabolismo , Metilação de DNA , Humanos , Hipóxia/genética , Isocitrato Desidrogenase , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
12.
Cells ; 10(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34831187

RESUMO

Ascorbate is an important element of a variety of cellular processes including the control of reactive oxygen species levels. Since reactive oxygen species are implicated as a key factor in tumorigenesis and antitumor therapy, the injection of a large amount of ascorbate is considered beneficial in cancer therapy. Recent studies have shown that ascorbate can cross the plasma membrane through passive diffusion. In contrast to absorption by active transport, which is facilitated by transport proteins (SVCT1 and SVCT2). The passive diffusion of a weak acid across membranes depends on the electrostatic potential and the pH gradients. This has been used to construct a new theoretical model capable of providing steady-state ascorbate concentration in the intracellular space and evaluating the time needed to reach it. The main conclusion of the analysis is that the steady-state intracellular ascorbate concentration weakly depends on its serum concentration but requires days of exposure to saturate. Based on these findings, it can be hypothesized that extended oral ascorbate delivery is possibly more effective than a short intravenous infusion of high ascorbate quantities.


Assuntos
Ácido Ascórbico/metabolismo , Espaço Intracelular/metabolismo , Potenciais da Membrana/fisiologia , Neoplasias/terapia , Linhagem Celular Tumoral , Espaço Extracelular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Análise Numérica Assistida por Computador , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Fatores de Tempo
13.
Sci Rep ; 11(1): 21345, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725426

RESUMO

The active DNA demethylation process may be linked to aberrant methylation and may be involved in leukemogenesis. We investigated the role of epigenetic DNA modifications in childhood acute lymphoblastic leukemia (ALL) diagnostics and therapy monitoring. We analyzed the levels of 5-methyl-2'-deoxycytidine (5-mdC) oxidation products in the cellular DNA and urine of children with ALL (at diagnosis and during chemotherapy, n = 55) using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry (2D UPLC-MS/MS). Moreover, the expression of Ten Eleven Translocation enzymes (TETs) at the mRNA and protein levels was determined. Additionally, the ascorbate level in the blood plasma was analyzed. Before treatment, the ALL patients had profoundly higher levels of the analyzed modified DNA in their urine than the controls. After chemotherapy, we observed a statistically significant decrease in active demethylation products in urine, with a final level similar to the level characteristic of healthy children. The level of 5-hmdC in the DNA of the leukocytes in blood of the patient group was significantly lower than that of the control group. Our data suggest that urinary excretion of epigenetic DNA modification may be a marker of pediatric ALL status and a reliable marker of chemotherapy response.


Assuntos
Biomarcadores Tumorais/genética , DNA/genética , Epigênese Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Biomarcadores Tumorais/urina , Criança , Pré-Escolar , DNA/urina , Metilação de DNA , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/urina
14.
Commun Biol ; 4(1): 691, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099857

RESUMO

Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.


Assuntos
Citosina/análogos & derivados , Elementos Nucleotídeos Longos e Dispersos , Fases de Leitura Aberta , Espermátides/metabolismo , Animais , Citosina/metabolismo , Masculino , Camundongos , Espermátides/citologia , Espermatogênese , Transcrição Gênica
15.
Anal Biochem ; 618: 114129, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556332

RESUMO

Our first objective was to develop an approach useful for reliable normalization of 2-hydroxyglutarate (2-HG) intracellular levels. The second objective was to use our data normalization strategy to verify previously published report on the higher d-2-HG level in tumors of colorectal cancer (CRC) patients than in normal colon fragments. We examined various methods of 2-HG level normalization in cell/tissue extracts (number of cells, mass of tissue, total protein). In order to solve the problems with reliable normalization of the 2-HG levels in colon fragments, we proposed a strategy based on relating the concentrations of 2-HG isomers to total thymine concentrations measured by ultra-performance liquid chromatography (UPLC) with UV detection in acid hydrolysates of the cell/tissue extracts. We used a common method of derivatization with diacetyl-l-tartaric anhydride (DATAN) to separate l- and d-2-HG enantiomers. DATAN-derivatized 2-HG was quantitated by UPLC with tandem mass spectrometry (MS/MS) in the selected reaction monitoring (SRM) mode. We observed a linear dependence of the total amount of thymine released from lymphocytes, HCT 116, K562, and PC-3 by acid hydrolysis on their number of cells. Our results showed a significantly higher level of l- and d-2-HG in cancer-free colon than in tumor.


Assuntos
Neoplasias Colorretais/metabolismo , Glutaratos/metabolismo , Timina/metabolismo , Idoso , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
16.
Methods Mol Biol ; 2198: 269-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822038

RESUMO

5-hydroxymethyluracil was originally identified as an oxidatively modified DNA base derivative. Recent evidence suggests that its formation may result from the oxidation of thymine in a reaction that is catalyzed by TET proteins. Alternatively, it could be generated through the deamination of 5-hydroxymethylcytosine by activation-induced cytidine deaminase. The standard method for evaluating 5-hydroxymethyluracil content is the highly sensitive and highly specific isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). Despite many advantages, this method has one great limitation. It is not able to measure compounds at a single-cell level. Our goal was to develop and optimize a method based on flow cytometry that allows the evaluation of 5-hydroxymethyluracil levels at a single cell level in peripheral leukocytes.


Assuntos
Citometria de Fluxo/métodos , Pentoxil (Uracila)/análogos & derivados , Análise de Célula Única/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , 5-Metilcitosina/sangue , Cromatografia Líquida , Citosina/metabolismo , DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Humanos , Oxirredução , Pentoxil (Uracila)/análise , Pentoxil (Uracila)/sangue , Pentoxil (Uracila)/metabolismo , Espectrometria de Massas em Tandem , Timina/metabolismo
17.
Methods Mol Biol ; 2198: 27-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822020

RESUMO

Stable-isotope-dilution tandem mass spectrometry is the most advanced technique used for quantitative determination of a wide spectrum of endogenously generated DNA nucleobase modifications. It is regarded as a gold standard for such analyses. Here, we consider the requirements for reliable identification and quantification of DNA adducts/modifications, whether endogenously derived or not, and discuss how their quantification can provide information on the mechanism of action and the biological relevance of individual nucleobase modifications. A clinical application of such measurements will only be possible after a full validation of the assay and once we have gained a better understanding of the exact role that these DNA modifications play in disease pathogenesis. Once these prerequisites are satisfied, DNA modification measurements may be helpful as clinical parameters for treatment monitoring, for risk group identification and for the development of prevention strategies.


Assuntos
DNA/metabolismo , Epigênese Genética , Epigenômica , Espectrometria de Massas , Animais , DNA/genética , DNA/urina , Metilação de DNA , Epigenômica/métodos , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem , Uracila/metabolismo , Urinálise/métodos
18.
Methods Mol Biol ; 2198: 91-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822025

RESUMO

Our hereby presented methodology is suitable for reliable assessment of the most common DNA modifications which arise as a product of fundamental metabolic processes. 8-oxoguanine, one of the oxidatively modified DNA bases is a typical biomarker of oxidative stress. A noncanonical base, uracil, may also be present in small quantities in DNA. Ten-eleven translocation (TET) proteins are involved in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine which can be further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-hydroxymethyluracil may be formed in deamination reaction of 5-hydroxymethylcytosine or can also be generated by TET enzymes. All the above mentioned modifications seem to play some regulatory roles. Here, we provide a protocol for isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS) for direct measurement of 5-methyl-2'-deoxycytidine, 5-(hydroxymethyl)-2'-deoxycytidine, 5-formyl-2'-deoxycytidine, 5-carboxy-2'-deoxycytidine, 5-(hydroxymethyl)-2'-deoxyuridine, 2'-deoxyuridine, and 8-oxo-2'-deoxyguanosine. We also provide optimized protocols for extraction of DNA, fully compatible with the downstream MS/MS analysis.


Assuntos
Cromatografia Líquida de Alta Pressão , Epigênese Genética , Epigenômica , Espectrometria de Massas em Tandem , 5-Metilcitosina/análogos & derivados , Animais , Citosina/análogos & derivados , DNA/genética , DNA/metabolismo , Metilação de DNA , Epigenômica/métodos , Hidrólise , Peixe-Zebra
19.
Methods Mol Biol ; 2198: 123-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822027

RESUMO

Reliable quantitative analysis of DNA modification using liquid chromatography coupled with tandem mass spectrometry requires stable isotope-labeled internal standards. Only some of them are commercially available. Here we present a method allowing for the synthesis of [13C10,15N2]-5-methyl-2'-deoxycytidine from [13C10,15N2]-2'-deoxythymidine. We also describe an approach for the oxidation of [13C10,15N2]-5-methyl-2'-deoxycytidine and [13C10,15N2]-2'-deoxythymidine with Na2S2O8, leading to the generation of [13C10,15N2]-5-formyl-2'-deoxycytidine, [13C10,15N2]-5-carboxy-2'-deoxycytidine or [13C10,15N2]-5-(hydroxymethyl)-2'-deoxyuridine, correspondingly. Moreover, we provide optimized protocols for the oxidation of [13C5,15N2]-thymine to [13C10,15N2]-5-hydroxymethyluracil, [13C10,15N2]-5-formyluracil, and [13C10,15N2]-5-carboxyuracil using Na2S2O8.


Assuntos
Cromatografia Líquida de Alta Pressão , DNA/química , Epigênese Genética , Epigenômica , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , DNA/genética , DNA/metabolismo , Epigenômica/métodos , Humanos , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/metabolismo , Oxirredução , Espectrometria de Massas em Tandem/métodos , Timina/química , Timina/metabolismo
20.
Commun Biol ; 3(1): 493, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895473

RESUMO

Loss-of-function TET2 mutations (TET2MT) are common in myeloid neoplasia. TET2, a DNA dioxygenase, requires 2-oxoglutarate and Fe(II) to oxidize 5-methylcytosine. TET2MT thus result in hypermethylation and transcriptional repression. Ascorbic acid (AA) increases dioxygenase activity by facilitating Fe(III)/Fe(II) redox reaction and may alleviate some biological consequences of TET2MT by restoring dioxygenase activity. Here, we report the utility of AA in the prevention of TET2MT myeloid neoplasia (MN), clarify the mechanistic underpinning of the TET2-AA interactions, and demonstrate that the ability of AA to restore TET2 activity in cells depends on N- and C-terminal lysine acetylation and nature of TET2MT. Consequently, pharmacologic modulation of acetyltransferases and histone deacetylases may regulate TET dioxygenase-dependent AA effects. Thus, our study highlights the contribution of factors that may enhance or attenuate AA effects on TET2 and provides a rationale for novel therapeutic approaches including combinations of AA with class I/II HDAC inhibitor or sirtuin activators in TET2MT leukemia.


Assuntos
Ácido Ascórbico/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação/genética , Acetilação , Administração Oral , Animais , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Células HEK293 , Humanos , Células K562 , Lisina/genética , Camundongos , Proteínas Proto-Oncogênicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...